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Predictive Modeling - Goals and
Approach



Setup - (Supervised) Statistical/Machine Learning (SML)

v

v

Y is the response (quantitative or categorical),
X is the set of covariates/predictors; often high-dimensional
(“large p")
Relate Y ~ X as

» YV = f(X) + e (regression), or

» Pr(Y =k) = g(X) (classification), or

» Y = blackBox(X) (“black box" machine learning)
Goal: good predictive performance of Y's on a left-out set of
data (aka “test" data). Care less about inference.

Fitting/training: have models use a subset of data (“training
set") to learn the relationship Y ~ X and calibrate tuning
parameters, then predict outside of training sample.

Approach: K-fold cross-validation to tune parameters and
estimate predictive performance (test RMSE or
misclassification rate).
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K-fold Cross-Validation - lllustration
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(Almost) Everything is a Sensor (or Acts Like It)
Case Studies:

1. Predicting type | diabetes (T1D) in young children using
high-dimensional “multiomics" data (gene expression, blood
metabolites, gut microbiome, etc).

Omics platforms outputs act as sensors. E.g., gene expression
data - measure activity of ~ 21,000 genes.

Y - incidence of T1D (binary). X - omics profiles.
2. Predicting household-level water use in an urban area.
Individual households act as sensors.

Y - monthly water use data; X - demographic, economic &
climate variables.

3. Predicting particulate matter air pollution in an urban setting.

A network of “rotating" monitors recording black carbon (BC)
concentration acts as a sensor.

Y - BC readings; X - space, time, pop. and climate variables.



Case Studies: Complicating “Stylized Features" /Properties

Three Case Studies:
1. Predicting type | diabetes (T1D) in young children

“Large p, small n"; missing data; standardization and
normalization

2. Predicting household-level water use in an urban area.
Temporal & spatial dependence/heterogeneity; very large n
3. Predicting particulate matter air pollution in an urban setting.

Multiple related datasets of different space-time coverage at
different temporal resolutions. A lot of missing data.

A highlight: pooling data of different types using hierarchical
Bayesian modeling
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Case Study: Predicting T1D in
Children using TEDDY Study Data



Objectives

» Create predictive models using “omics" datasets collected in a
large scale study of T1D

» Test models for each omics dataset on left out data

» Combine best performing omics models into a single
predictive model

» Test final models on held out data
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TEDDY Study

Study was run by The Environmental Determinants of
Diabetes in the Young (TEDDY)

Study was conducted at 6 clinical centers (Seattle, WA,

Denver, CO, Augusta, GA, Munich, Germany, Turku, Finland,

and Malmo, Sweden)

Several thousand children with a genetic predisposition to
type one diabetes (T1D) were chosen

Subjects were followed from birth and visited clinical centers
roughly every 3 months until 4 years old

Case-control study: Subjects who developed T1D were
matched with healthy children of the same or similar age,
gender, genotype, and location
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Data Structure

» For our study the year prior to seroconversion (typical
precursor of T1D) was used

» Data was divided into 3 month timepoints to track with
testing schedule

» Timepoints are defined as months until seroconversion
» Helped to cope with high level of missing data

» Demographic data was included in each omics data set for
each subject
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TEDDY Study

Our datasets range from 400 to 1,400 subjects. The omics
datasets include:

» Gene expression, p &~ 21000 (dimension reduction is critical)
Metabolomics, p ~ 1300

v

v

Dietary Biomarkers
» SNPs

Microbiome

v
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Pattern of Data Missingness

Diet Biomarkers Metabolomics Gene Expression SNP

1296 301296 301296 3 0
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Multiomic Data Availability

Available data by omics type

Data TPO | TP3 | TP6 | TP9 | TP12
Gene, meta, SNP 157 | 110 | 105 95 04
Gene, meta, SNP, microbio | 103 84 77 65 58
Gene, meta, SNP, biomark | 46 40 26 39 26
All 31 35 26 29 18
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Inference
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Best-Performing Multiomic Models across All Timepoints

Best performing multiomic models across all timepoints

Gene | Meta | SNP | Model | Misclassification
X X X RF 41.8
X X RF 42 .4
X X SVM 43.2
X X RF 447
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Best-Performing Multiomic Models

Time | Model | Misclassification
0 GBM 41.0
3 RF 40.7
6 SVM 42.1
9 SVM 36.7
12 SVM 30.9




Case Study: Towards Predictive

Modeling of “Big"” Utilities Data -

Statistical and Machine Learning

Methods for Predicting Household
Water Demand



Data

Our dataset consists of water usage data from Tampa Bay
Water

One million unique customer records of monthly water usage

Data stretches from approximately 1998 to 2010 (varies by
parcel)

55 additional covariates, including parcel-specific and weather
variables

Weather data applied over 2km by 2km pixel grid
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Training and Testing Sets

v

The test and training sets were selected by year and month

The test set is made up of the year stretching from Feb, 2009
to Jan, 2010

The model was tested for each month in the test set separately

One month ahead predictions were made for each month
using all of the previous time points

As a result the training set increases as we move further into
the test set

Using the one month ahead method simulates a real world
situation where data is continuously added to the model

k months ahead predictions were also done
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Spatial and Temporal Structure |
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Fig. 1. (a) The region in Florida to which Tampa Bay Water supplies water. (b) The city of Tampa within the greater bay area. (c) Locations of households included in this study and
average total monthly water use.
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Spatial and Temporal Structure Il
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Fig.3. (a) The average total water use per month for each census block from 1999 to 2009. (b) The estimated lag-1 autocorrelation coefficient from an exploratory AR (1) model fit to
census-level data.
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Prediction Quality Metrics for Comparison

Table 2

Definition of each metric used for comparing forecast quality across models. Each
metric is computed using the same training and test set for each model. y; is the
forecast for the it observation of total water use y;, and (i) and (?) are the it" indices
of the observations ranked by the sizes of the observed (y) and predicted (y) values,
respectively. y< and y y, ) are the lower and upper bounds of the (1 — «)100% pre-
diction intervals, respectively. I(+) is the indicator function that takes value 1 if the
condition in the argument is true, and O otherwise; e.g., if f(x) = I(1 < x < 3), then

£(0) = 0and f(2) =
RMSE = {1 (v; — )% /N}'/?
GINI = X34 [5j1Y 5y /55 = (/NI (S /5555 = (D/N]
AWPI: 1:1 (y, 7y1‘ )/
ECPl = >N 13" <y; <3N
NOIS = AWPI + 25V, [(y,-” Y@ >y + i~ 3> N




Prediction Quality Metrics for Comparison

Point measures:

» RMSE, the root mean squared error of predicted and observed
values

» Gini, a score of how well the model correctly predicts the
ordering of the results

Interval measures:
» AWPI, the average width of prediction intervals
» ECPI, the empirical coverage of prediction intervals
» NOIS, the negatively oriented interval score:

. (upper) 1 (obs) (upper)
NOIS; =y, + o (yi - Y; ) |:y§obs)>y§upper):|
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Performance: one month ahead prediction

1-month forecast assessments for each model, averaged over 12 months.

RMSE GINI AWPI ECPI NOIS
Shared monthly means 260426 0.009 9156.01 0.954 10955.50
Individual monthly means 223436 0.590 8071.93 0.962 9827.94
Random effects 2199.75 0.602 784596 0954 9758.60
Linear regression 2496.05 0.161 457285 0.625 20816.21
AR (1) 1246.21 0.879 641736 0.944 8073.36
ARIMA 1276.78 0.889 417048 0.922 7326.39
ST 1265.88 0.877 6467.76 0.949 8055.11
RF 1908.88 0.690 6892.60 0.910 9369.87
BART 2125.00 0.540 5037.23 0.710 15326.53
GBM 227528 0513 4993.50 0.709 16257.64
GAM 246599 0.206 8562.03 0.936 10972.02
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Performance: £ months ahead prediction |

k-months forecast assessments for each model, averaged over 12 months.

RMSE GINI  AWPI ECPI  NOIS
Shared monthly means 261749 0.004 9175.17 0.954 10961.47
Individual monthly means 2315.70 0.556 8057.30 0.955 9971.84
Random effects 228143 0567 7829.43 0.950 9903.72
Linear regression 2500.03 0.157 4606.16 0.630 20613.25
AR (1) 1950.74 0.674 9149.45 0.958 10668.27
ARIMA 227585 0.658 11063.49 0.935 10911.00
ST 211348 0.597 8948.82 0962 10312.72
RF 1996.65 0.634 6806.43 0.887 9810.98
BART 2213.64 0474 5146.76 0.723 15214.26
GBM 2295.72 0.503 5096.52 0.677 19747.03
GAM 2502.06 0.168 8791.54 0.939 11083.02
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Performance: k£ months ahead prediction |l
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Case Study: Predictive Modeling of
Air Pollution by Black Carbon in the
Greater Boston Area Using Data
from Multiple Sources



Problem and Goals
Goal

Build a model for spatio-temporal prediction of the particulate
matter air pollution (black carbon, BC) process.

Motivation

» When controlled for other risk factors, exposure to particulate
matter in the air in urban areas has been shown to be
positively associated with elevated mortality and morbidity.

» For locally-generated pollutants, spatial predictions using only
a central-site monitor can incur significant measurement error.

» Models based on a single study often fail to provide adequate
coverage over a given spatial region and time period.

Approach

Use Bayesian hierarchical modeling to combine information from
multiple related datasets.

28 /40



What is BC?

BC particles are formed through incomplete combustion of fuels
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Data

Monitors are scattered irregularly in space and operate irregularly
in time.
» BCO - Outdoor concentrations of BC from 3 studies.
» over 6,500 daily averages from a total of about 80 sites
» bulk of the data comes from < 15 sites
» BCI - Indoor concentrations of BC
» = 300 daily averages from a total of 45 distinct households
» monitoring sites overlap spatially with 30 BCO sites
» BCS - average multi-day concentrations of indoor BC.
Equivalently, Sums of daily indoor BC concentrations.

» 1 reading per household from about 100 households

» data aggregated over multiple days; individual daily average
concentrations are not available

> average monitoring time per household - 7 days
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lllustration: s-t coverage by BCO and BCS monitors
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= Need to solve the change of support problem (e.g., Gelfand,
Zhu, Carlin, 2001, and references therein).
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Temporal Coverage by Monitor Type
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Spatial Distribution of Monitors

Legend
Black Carbon Monitors
©  Daily outdoor
®  Daily indoor
A Multiday indoor
©  Daily both in and outdoors
[ 40 km from Countway Kilome

AN

= Use all data to reduce the prediction error of the unknown
exposure process (in spatio-temporal misalignment problem).
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A Null Model - Gryparis et al., (2007)

Nij = CiTj’w + 6% (latent process)
YiJO = Mij + 52 (log outdoor BC)
Yi§ = Qo + a1 + 67;1]» (log daily indoor BC)

» Indexing: 7 for spatial site, j for day, e.g., e?j = €"(xy;, time;)
> Gryparis et al. (2007), set e?j =0.

Validating the daily indoor BC model

corr(logBCO, logBCI) = 0.93 corr(logBCO, logBCl) = 0.97

corr(logBCO, IogBCl) = 0.98
02 1 (logt 9BCI)
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A Nonlinear Statistical Model

nij = chw + € (latent process)
YO =nij + e” (log outdoor BC)
YI = i + a1 + e” (log daily indoor BC)

Y;*S: aoi + gi(mis o) + QS (log multiday indoor BC),
where g;(n;; a1) = log 3 ; exp(a1nij)
Motivation

Suppose e =0 = YI = ap; + a1m;;
=V = a()z +1log >, eXp(oqmj)-

Here, €'(-,-) is a continuous Gaussian spatio-temporal process.
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Structure of the Latent Process

The linear model for the latent process is
n(xy;, time;) = c(xy;, time;)Tw + €7(xy;, time;).
Consider the semiparametric model c(xy,, time;) w =
obs(xy;, time;)T B + fs(xy;) + fr(time;) + fsr(xy;, time;),
where
> obs(xy,,time;) is a vector of observable predictors; e.g.,
meteorology, population, distance to roadway.
> fs, fr and fsr are smooth spatial, temporal and
spatio-temporal trends/surfaces.

» Represent the smooth trends using basis functions, ¢ and .

> [s(xy) = ¢lxy) ws,
» fr(time) = (time)Twr (annual cyclic trend),
> fsr(xy, time) = {¢(xy)" @ ¥(time) }wsr.

» Thus, w = (BT, wl wlh wl )T

36
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Bayesian Paradigm

0: parameters of interests; D: data
Data model (likelihood): D |8 ~ p(D | 0)

» Prior knowledge about 6:
» Bayesian: a random variable ~ 7(8) (prior distribution).
» Frequentist: a fixed value 6.
» Bayes theorem: prior distribution + likelihood = posterior
distribution with a pdf/pmf

 (D]0)x(0)
PO1D) = 1 D 9)x(6)d6

» Main advantage: conceptually easy uncertainty quantification
through the posterior distribution and predictive distribution.
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Bayesian Inference

» p(@|D) ~ asimple and common distribution. The posterior
mean, confidence interval, and other key quantities are
available in explicit expressions.

» If they are not explicitly available, use their sample versions.

» Sometimes it is possible to draw iid samples from p(8 | D).
» If not, Markov Chain Monte Carlo (MCMC) algorithms are
used to draw dependent and approximated samples.

» Gibbs sampling:

Y ~ p(01]6“), D), ..., 0" ~ p(6,10-,, D).

» Metropolis-Hasting algorithm: Given the gth sample 69,
propose a new state 0 from some proposal distribution; accept
it as the (g + 1)th sample with probability «, which depends
on the proposal and the posterior distribution; otherwise
gls+) — gl9)

» Metropolis-Hasting within Gibbs sampling
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Summary and Conclusions

v

v

“Big Data" is a hot topic of research ...
... but “big" or “small" is relative to the approach/algorithm.

» Another somewhat vague dimension to consider - “messiness"

(e.g., due to data “missingness").

» “Big" and “messy" data are often intractable.

> If “messy", “small" data can become “big".

» Other complicating features: dependence (temporal, spatial),

modeler’s philosophy/beliefs (“Bayesianity").
Only simple models are tractable with “big" data.

» A fancy ML method is not necessarily the best.

» Is a single point-level test error summary (RMSE or

misclassification rate) sufficient?

= Working with “messy" data is hard. Each study presented
was very labor intensive and required over a year of full-time
work (typically more).
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Thank you!




