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Predictive Modeling - Goals and
Approach
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Setup - (Supervised) Statistical/Machine Learning (SML)
I Y is the response (quantitative or categorical),
I X is the set of covariates/predictors; often high-dimensional

(“large p")
I Relate Y ∼ X as

I Y = f(X) + ε (regression), or
I Pr(Y = k) = g(X) (classification), or
I Y ≈ blackBox(X) (“black box" machine learning)

I Goal: good predictive performance of Y s on a left-out set of
data (aka “test" data). Care less about inference.

I Fitting/training: have models use a subset of data (“training
set") to learn the relationship Y ∼ X and calibrate tuning
parameters, then predict outside of training sample.

I Approach: K-fold cross-validation to tune parameters and
estimate predictive performance (test RMSE or
misclassification rate).
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K-fold Cross-Validation - Illustration
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(Almost) Everything is a Sensor (or Acts Like It)
Case Studies:
1. Predicting type I diabetes (T1D) in young children using

high-dimensional “multiomics" data (gene expression, blood
metabolites, gut microbiome, etc).
Omics platforms outputs act as sensors. E.g., gene expression
data - measure activity of ≈ 21,000 genes.
Y - incidence of T1D (binary). X - omics profiles.

2. Predicting household-level water use in an urban area.
Individual households act as sensors.
Y - monthly water use data; X - demographic, economic &
climate variables.

3. Predicting particulate matter air pollution in an urban setting.
A network of “rotating" monitors recording black carbon (BC)
concentration acts as a sensor.
Y - BC readings; X - space, time, pop. and climate variables.
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Case Studies: Complicating “Stylized Features"/Properties

Three Case Studies:
1. Predicting type I diabetes (T1D) in young children

“Large p, small n"; missing data; standardization and
normalization

2. Predicting household-level water use in an urban area.
Temporal & spatial dependence/heterogeneity; very large n

3. Predicting particulate matter air pollution in an urban setting.
Multiple related datasets of different space-time coverage at
different temporal resolutions. A lot of missing data.
A highlight: pooling data of different types using hierarchical
Bayesian modeling
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Case Study: Predicting T1D in
Children using TEDDY Study Data
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Objectives

I Create predictive models using “omics" datasets collected in a
large scale study of T1D

I Test models for each omics dataset on left out data
I Combine best performing omics models into a single

predictive model
I Test final models on held out data
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TEDDY Study

I Study was run by The Environmental Determinants of
Diabetes in the Young (TEDDY)

I Study was conducted at 6 clinical centers (Seattle, WA,
Denver, CO, Augusta, GA, Munich, Germany, Turku, Finland,
and Malmo, Sweden)

I Several thousand children with a genetic predisposition to
type one diabetes (T1D) were chosen

I Subjects were followed from birth and visited clinical centers
roughly every 3 months until 4 years old

I Case-control study: Subjects who developed T1D were
matched with healthy children of the same or similar age,
gender, genotype, and location
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Data Structure

I For our study the year prior to seroconversion (typical
precursor of T1D) was used

I Data was divided into 3 month timepoints to track with
testing schedule

I Timepoints are defined as months until seroconversion
I Helped to cope with high level of missing data
I Demographic data was included in each omics data set for

each subject
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TEDDY Study

Our datasets range from 400 to 1,400 subjects. The omics
datasets include:

I Gene expression, p ≈ 21000 (dimension reduction is critical)
I Metabolomics, p ≈ 1300
I Dietary Biomarkers
I SNPs
I Microbiome
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Pattern of Data Missingness
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Multiomic Data Availability
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Inference vs Prediction
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Best-Performing Multiomic Models across All Timepoints
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Best-Performing Multiomic Models
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Case Study: Towards Predictive
Modeling of “Big” Utilities Data -
Statistical and Machine Learning
Methods for Predicting Household

Water Demand
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Data

I Our dataset consists of water usage data from Tampa Bay
Water

I One million unique customer records of monthly water usage
I Data stretches from approximately 1998 to 2010 (varies by

parcel)
I 55 additional covariates, including parcel-specific and weather

variables
I Weather data applied over 2km by 2km pixel grid

18 / 40



Training and Testing Sets

I The test and training sets were selected by year and month
I The test set is made up of the year stretching from Feb, 2009

to Jan, 2010
I The model was tested for each month in the test set separately
I One month ahead predictions were made for each month

using all of the previous time points
I As a result the training set increases as we move further into

the test set
I Using the one month ahead method simulates a real world

situation where data is continuously added to the model
I k months ahead predictions were also done
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Spatial and Temporal Structure I
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Spatial and Temporal Structure II
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Prediction Quality Metrics for Comparison
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Prediction Quality Metrics for Comparison

Point measures:
I RMSE, the root mean squared error of predicted and observed

values
I Gini, a score of how well the model correctly predicts the

ordering of the results
Interval measures:

I AWPI, the average width of prediction intervals
I ECPI, the empirical coverage of prediction intervals
I NOIS, the negatively oriented interval score:
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Performance: one month ahead prediction
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Performance: k months ahead prediction I
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Performance: k months ahead prediction II
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Case Study: Predictive Modeling of
Air Pollution by Black Carbon in the
Greater Boston Area Using Data

from Multiple Sources
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Problem and Goals
Goal
Build a model for spatio-temporal prediction of the particulate
matter air pollution (black carbon, BC) process.

Motivation
I When controlled for other risk factors, exposure to particulate

matter in the air in urban areas has been shown to be
positively associated with elevated mortality and morbidity.

I For locally-generated pollutants, spatial predictions using only
a central-site monitor can incur significant measurement error.

I Models based on a single study often fail to provide adequate
coverage over a given spatial region and time period.

Approach
Use Bayesian hierarchical modeling to combine information from
multiple related datasets.
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What is BC?

BC particles are formed through incomplete combustion of fuels
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Data

Monitors are scattered irregularly in space and operate irregularly
in time.

I BCO - Outdoor concentrations of BC from 3 studies.
I over 6,500 daily averages from a total of about 80 sites
I bulk of the data comes from ≤ 15 sites

I BCI - Indoor concentrations of BC
I ≈ 300 daily averages from a total of 45 distinct households
I monitoring sites overlap spatially with 30 BCO sites

I BCS - average multi-day concentrations of indoor BC.
Equivalently, Sums of daily indoor BC concentrations.

I 1 reading per household from about 100 households
I data aggregated over multiple days; individual daily average

concentrations are not available
I average monitoring time per household - 7 days
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Illustration: s-t coverage by BCO and BCS monitors

⇒ Need to solve the change of support problem (e.g., Gelfand,
Zhu, Carlin, 2001, and references therein).
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Temporal Coverage by Monitor Type
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Spatial Distribution of Monitors

⇒ Use all data to reduce the prediction error of the unknown
exposure process (in spatio-temporal misalignment problem).
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A Null Model - Gryparis et al., (2007)

ηij = cT
ijw + εηij (latent process)

Y O
ij = ηij + εOij (log outdoor BC)
Y I
ij = α0i + α1ηij + εIij (log daily indoor BC)

I Indexing: i for spatial site, j for day, e.g., εηij = εη(xyi, timej)
I Gryparis et al. (2007), set εηij = 0.

Validating the daily indoor BC model
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A Nonlinear Statistical Model

ηij = cT
ijw + εηij (latent process)

Y O
ij = ηij + εOij (log outdoor BC)
Y I
ij = α0i + α1ηij + εIij (log daily indoor BC)

Y S
i = α0i + gi(ηi;α1) + εSi (log multiday indoor BC),

where gi(ηi;α1) = log
∑
j exp(α1ηij)

Motivation
Suppose εIij = 0. ⇒ Y I

ij = α0i + α1ηij
⇒ Y S

i = α0i + log
∑
j exp(α1ηij).

Here, εη(·, ·) is a continuous Gaussian spatio-temporal process.
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Structure of the Latent Process
The linear model for the latent process is
η(xyi, timej) = c(xyi, timej)Tw + εη(xyi, timej).

Consider the semiparametric model c(xyi, timej)Tw =
obs(xyi, timej)Tβ + fS(xyi) + fT (timej) + fST (xyi, timej),
where

I obs(xyi, timej) is a vector of observable predictors; e.g.,
meteorology, population, distance to roadway.

I fS , fT and fST are smooth spatial, temporal and
spatio-temporal trends/surfaces.

I Represent the smooth trends using basis functions, φ and ψ.
I fS(xy) = φ(xy)TwS ,
I fT (time) = ψ(time)TwT (annual cyclic trend),
I fST (xy, time) = {φ(xy)T ⊗ψ(time)T}wST .

I Thus, w = (βT, wT
S , w

T
T , w

T
ST )T.
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Bayesian Paradigm

θ: parameters of interests; D: data

Data model (likelihood): D |θ ∼ p(D |θ)

I Prior knowledge about θ:
I Bayesian: a random variable ∼ π(θ) (prior distribution).
I Frequentist: a fixed value θ0.

I Bayes theorem: prior distribution + likelihood =⇒ posterior
distribution with a pdf/pmf

p(θ |D) = p(D |θ)π(θ)∫
Θ p(D |θ)π(θ)dθ

I Main advantage: conceptually easy uncertainty quantification
through the posterior distribution and predictive distribution.
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Bayesian Inference

I p(θ |D) ∼ a simple and common distribution. The posterior
mean, confidence interval, and other key quantities are
available in explicit expressions.

I If they are not explicitly available, use their sample versions.
I Sometimes it is possible to draw iid samples from p(θ |D).
I If not, Markov Chain Monte Carlo (MCMC) algorithms are

used to draw dependent and approximated samples.
I Gibbs sampling:
θ

(g+1)
1 ∼ p(θ1|θ(g)

−1,D), . . . , θ(g+1)
p ∼ p(θp|θ−p,D).

I Metropolis-Hasting algorithm: Given the gth sample θ(g),
propose a new state θ̃ from some proposal distribution; accept
it as the (g + 1)th sample with probability α, which depends
on the proposal and the posterior distribution; otherwise
θ(g+1) = θ(g).

I Metropolis-Hasting within Gibbs sampling
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Summary and Conclusions
I “Big Data" is a hot topic of research . . .
I . . . but “big" or “small" is relative to the approach/algorithm.
I Another somewhat vague dimension to consider - “messiness"

(e.g., due to data “missingness").
I “Big" and “messy" data are often intractable.
I If “messy", “small" data can become “big".
I Other complicating features: dependence (temporal, spatial),

modeler’s philosophy/beliefs (“Bayesianity").
Only simple models are tractable with “big" data.

I A fancy ML method is not necessarily the best.
I Is a single point-level test error summary (RMSE or

misclassification rate) sufficient?

⇒ Working with “messy" data is hard. Each study presented
was very labor intensive and required over a year of full-time
work (typically more).
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Thank you!
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